
160

Efficient Personalized PageRank Computation: The Power of
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Personalized PageRank (PPR) computation is a fundamental problem in graph analysis. The state-of-the-art

algorithms for PPR computation are based on a bidirectional framework which include a deterministic forward

push and a Monte Carlo sampling procedure. The Monte Carlo sampling procedure, however, often has a

relatively-large variance, thus reducing the performance of the PPR computation algorithms. To overcome

this issue, we develop two novel variance-reduced Monte Carlo techniques for PPR computation. Our first

technique is to apply power iterations to reduce the variance of the Monte Carlo sampling procedure. We

prove that conducting few power iterations can significantly reduce the variance of existing Monte Carlo

estimators, only with few additional costs. Moreover, we show that such a simple and novel variance-reduced

Monte Carlo technique can achieve comparable estimation accuracy and the same time complexity as the

state-of-the-art bidirectional algorithms. Our second technique is a novel progressive sampling method which

uses the historical information of former samples to reduce the variance of the Monte Carlo estimator. We

develop several novel PPR computation algorithms by integrating both of these variance reduction techniques

with two existing Monte Carlo sampling approaches, including random walk sampling and spanning forests

sampling. Finally, we conduct extensive experiments on 5 real-life large graphs to evaluate our solutions. The

results show that our algorithms can achieve much higher PPR estimation accuracy by using much less time,

compared to the state-of-the-art bidirectional algorithms.
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algorithms.
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1 INTRODUCTION
Personalized PageRank is an important and well-known concept in network analysis. Given a

directed and unweighted graph 𝐺 = (𝑉 , 𝐸) with 𝑛 nodes, a decay parameter 𝛼 , and a source

distribution 𝝈 , the personalized PageRank (PPR) vector 𝝅𝝈 is defined as the probability that an

𝛼-random walk starts from a source node 𝑠 , which is sampled from the distribution 𝝈 , and stops

at each node 𝑢 ∈ 𝑉 . Here an 𝛼-random walk is a random surfer on graph which stops at the
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current node with probability 𝛼 , and walks to a random outgoing neighbor of the current node

with probability 1 − 𝛼 .
Intuitively, by the above definition, the PPR value 𝝅𝝈 (𝑡) measures the importance of a node 𝑡

with respect to (w.r.t.) the source distribution 𝝈 . When the source distribution 𝝈 is a one-hot vector

e𝑠 (only 𝑠-th element is 1 and all the other elements are 0), the resulting PPR vector is called a single-

source PPR vector w.r.t. the source node 𝑠 [20, 22, 43]. Such a single-source PPR vector can measure

the similarities between the source node 𝑠 and the other nodes in the graph, thus it is widely used

in many graph analysis applications, such as web search [7, 22], link prediction [5], community

detection [1, 36], recommendation [12, 24], and machine learning [8, 25, 47]. Additionally, when the

source distribution is defined as 𝝅 =
∑
𝑢∈𝑉

1

𝑛
𝝅𝑢 , the PPR vector is the classic PageRank centrality

vector, which is a fundamental metric to measure the importance of the nodes in a graph [11, 16].

Among these applications, graph clustering [28, 36] and graph learning [8, 25, 47] often require a

small 𝛼 (e.g., 𝛼 = 0.01), while node similarity measure and node ranking [7, 16, 22, 26] typically

need a relatively-large 𝛼 (e.g., 𝛼 = 0.2).

Due to such a wide range of practical applications, there exist many algorithms to efficiently

compute the PPR vector of a graph. All of these algorithms can be roughly classified into two cate-

gories: deterministic algorithms and approximate algorithms. The deterministic PPR algorithms are

mainly based on the power iteration [9, 35, 48] or the forward push techniques [1, 6, 22]. To achieve

a high accuracy, such deterministic PPR algorithms are often inefficient on large graphs as they

typically requires a large number of iterations. To address this issue, many approximate algorithms

based on Monte Carlo sampling are proposed, including both the 𝛼-random walk sampling [3, 32]

and the spanning forests sampling [28]. Recently, such Monte Carlo based approximate algorithms

are further improved by the state-of-the-art bidirectional algorithms [28, 29, 32, 43, 46], which

integrate both forward push and Monte Carlo sampling techniques. Despite many efforts have been

made, the practical performance of these bidirectional algorithms is still unsatisfactory to achieve a

high estimation accuracy [28], especially when the decay parameter 𝛼 is small (e.g., 𝛼 = 0.01) which

is often the demanding case for machine learning related applications [8, 36, 47]. The main reason

behind this may be that the Monte Carlo sampling procedure in these bidirectional algorithms

often have a large variance, thus it needs to draw a large number of samples to achieve a high

accuracy.

To overcome this problem, we propose two novel variance reduction techniques to reduce the

variances of two existing Monte Carlo sampling procedures, including both the 𝛼-random walk

(𝛼-RW) sampling [3, 32] and spanning forests (SF) sampling [28]. Specifically, our first variance

reduction technique is to apply power iterations on the existing Monte Carlo estimators to reduce

their variances. We prove that with only few additional power iterations, the variance of the existing

Monte Carlo estimators can be substantially reduced (the variance is reduced by (1 − 𝛼)2𝐾 times

by only performing 𝐾 power iterations). Note that compared to the state-of-the-art bidirectional

algorithm SpeedPPR [46], the implementation of our variance-reduced Monte Carlo technique is

much simpler. Moreover, we show that such a simple and novel variance-reduced Monte Carlo

technique can achieve comparable accuracy and the same time complexity as the SpeedPPR
algorithm.

Our second technique is a novel progressive sampling strategy which utilizes the historical

information of former samples to reduce the variance of the existing Monte Carlo estimators.

We show that by using the estimator constructed by the former samples, we can obtain useful

information to improve the variance of the sampling procedure. Furthermore, such a progressive

sampling technique can be easily integrated with our first power-iteration based technique to

further reduce the variance. We develop several novel PPR computation algorithms by integrating

our variance reduction techniques with two existing Monte Carlo sampling approaches, including
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the 𝛼-random walk sampling and spanning forests sampling. Finally, the results of comprehensive

experiments on 5 large real-world graphs demonstrate the efficiency and effectiveness of the

proposed solutions. To summarize, the main contributions of this work are as follows.

New theoretical results. First, we present theoretical analyses for the variances of two existing

Monte Carlo sampling techniques. A formal comparison of the variances of these existing estimators

is also given. Second, we develop two novel and powerful variance reduction techniques, including

a power-iteration and a progressive sampling based techniques, to reduce the variances of the

existing estimators. Theoretical analyses for the variance reduction of our techniques are also

presented.

Novel PPR computation algorithms. We develop several novel PPR computation algorithms by

integrating our variance reduction techniques with two existing Monte Carlo sampling methods.

Compared to the state-of-the-art SpeedPPR algorithm, our algorithms are extremely simple and

easy to implement. Moreover, unlike all existing bidirectional algorithms, our algorithms do not use

the forward push procedure. Instead, we use few power iterations as well as a progressive sampling

technique to reduce the variance. To our knowledge, this is first work that can outperform existing

bidirectional algorithms without using the forward push technique.

Extensive experiments.We conduct extensive experiments on 5 large real-life graphs to evaluate

our algorithms. The results show that our algorithms substantially outperform the state-of-the-art

algorithms on most datasets, in terms of both accuracy and running time. For example, on a graph

with more than 3M nodes and 117M edges, when 𝛼 = 0.01, our best algorithm can compute the

single-source PPR vector with 𝐿1 error 4.6 × 10
−9

using only 114 seconds, while SpeedPPR can

only obtain the 𝐿1 error 1.8 × 10
−4

using 160 seconds. For reproducibility purpose, the source code

of this paper is released at an anonymous link https://github.com/mhliao516/pvr.

2 PRELIMINARIES
Given a directed and unweighted graph𝐺 = (𝑉 , 𝐸). Denote by𝑨 the adjacency matrix of𝐺 , 𝑫𝑜𝑢𝑡 be
the diagonal matrix with each element (𝑫𝑜𝑢𝑡 )𝑖𝑖 = 𝑑𝑜𝑢𝑡 (𝑖), the out degree of node 𝑖 . P = 𝑨𝑫−1

𝑜𝑢𝑡 is the

probability transition matrix. PageRank [26] can be modeled as an 𝛼-random walk process. Given a

source distribution 𝝈 , we first sample a node 𝑠 from the distribution 𝝈 . Then, an 𝛼-random walk

starts from 𝑠 ; and the personalized PageRank (PPR) value of node 𝑢 is defined as the probability that

the walk stops at 𝑢. Let e𝑠 be a one-hot vector with the 𝑠-th element equals 1, and the other elements

are 0. Let ®1 be an all-1 vector. When 𝝈 = e𝑠 , we use 𝝅𝑠 to denote the personalized PageRank vector

with respect to (w.r.t.) the source 𝑠 . When 𝝈 =
®1
𝑛
, we use 𝝅 to denote the PageRank centrality vector.

We can also represent PageRank values in a matrix form. Let 𝚷 be the personalized PageRank

matrix, where (𝚷)𝑠𝑡 denotes the personalized PageRank value 𝜋 (𝑠, 𝑡) w.r.t. to the source 𝑠 . We

have 𝚷 = 1

𝛼
(I − (1 − 𝛼)P)−1

. It follows that 𝝅𝑠 is the solution of a linear system A𝛼x = b, where
A𝛼 = I − (1 − 𝛼)P and b = 𝛼e𝑠 . Also, when b = 𝛼

®1
𝑛
, the solution vector of A𝛼x = b is the PageRank

centrality vector 𝝅 .
Given a graph 𝐺 , a rooted spanning forest is a subgraph of 𝐺 without cycle. A rooted spanning

forest may have several connected components, each connected component has a unique node

called "root" where all nodes in that component has a unique path towards the root. As a result,

each node in 𝐺 belongs to one of such connected components. We say a node 𝑠 is rooted in 𝑡 when

𝑠 belongs to the connected component in which 𝑡 is the root. For convenience, we denote 𝜌 [𝑠] = 𝑡 .
For an 𝑛-dimensional vector x, we define the 𝐿1-norm of x as ∥x∥1 =

∑
𝑢∈𝑉 |x(𝑢) |, and the

𝐿2-norm of x as ∥x∥2 =
√︁∑

𝑢∈𝑉 (x(𝑢))2. For a random vector x, we evaluate the variance of x by
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𝑉𝑎𝑟 [x] = 𝐸 [∥x − 𝐸 [x] ∥2
2
]. Also, it can be written as the sum of the variance of all its elements,

𝑉𝑎𝑟 [x] = ∑
𝑢∈𝑉 𝑉𝑎𝑟 [x(𝑢)].

In this paper, we focus on the following problem.

Definition 2.1. (Approximate personalized PageRank (PPR) computation) Given a relative error

threshold 𝜖 > 0, a PPR threshold ` and a source distribution 𝝈 , the approximate PPR computation

problem aims to calculate an estimation �̂�𝝈 (𝑢) for each node 𝑢 ∈ 𝑉 with 𝝅𝝈 (𝑢) ≥ ` such that

|�̂�𝝈 (𝑢) − 𝝅𝝈 (𝑢) | ≤ 𝜖𝝅𝝈 (𝑢) with a small failure probability 𝑝 𝑓 .

When 𝝈 is a one-hot vector, i.e. 𝝈 = e𝑠 , the problem is identical to a single-source personalized

PageRank query [43]. When 𝝈 =
®1
𝑛
, the problem is to compute a PageRank centrality vector. In

practice, the threshold ` is often set to
1

𝑛
so that it can guarantee a relative error for most relevant

nodes [43, 46]. The failure probability𝑝 𝑓 is also set to
1

𝑛
to ensure a vary small failure probability

[43, 46].

2.1 Basic PPR Computation Techniques

Existing personalized PageRank estimators. There mainly exist three estimators for estimating

single-source personalized PageRank vector 𝝅𝑠 . One is based on the 𝛼-random walk sampling, and

the other two are based on spanning forests sampling.

Lemma 2.2. ([32, 43]) Let x̄ be a vector of random variables. If an 𝛼-random walk starts from 𝑠 and
stops at node 𝑡 , we set x̄ = e𝑡 . Then, x̄ is an unbiased estimator of 𝝅𝑠 , i.e., 𝐸 [x̄] = 𝝅𝑠 .

Lemma 2.3. ([28]) Let 𝐹 ∈ F be a random rooted spanning forest and 𝜌 (𝐹 ) be the root set of 𝐹 .
Suppose that 𝐹 is sampled with probability 𝑃 (𝐹 ) ∝ ∏

𝑢∈𝜌 (𝐹 )
𝛼

1−𝛼𝑑𝑜𝑢𝑡 (𝑢), and 𝑠 is rooted in 𝑡 in 𝐹 .
Denote by x̃ a vector of random variables with x̃ = e𝑡 . Then, x̃ is an unbiased estimator of 𝝅𝑠 , i.e.,
𝐸 [x̃] = 𝝅𝑠 .

If the graph is undirected, we have 𝑑𝑖𝑛 (𝑢) = 𝑑𝑜𝑢𝑡 (𝑢) = 𝑑 (𝑢). Then, there is an improved spanning

forest based estimator which considers the partition information of the spanning forest [28].

Lemma 2.4. ([28]) Let 𝐹 ∈ F be a random rooted spanning forest and 𝜌 (𝐹 ) be the root set of
𝐹 . Suppose that 𝐹 is sampled with probability 𝑃 (𝐹 ) ∝ ∏

𝑢∈𝜌 (𝐹 )
𝛼

1−𝛼𝑑 (𝑢), and 𝑉𝜌 [𝑠 ] is the node set
of the connected component of 𝐹 that 𝑠 belongs to. Let ¤x be a a vector of random variables with
¤x =

∑
𝑢∈𝑉𝜌 [𝑠 ]

𝑑 (𝑢 )∑
𝑣∈𝑉𝜌 [𝑠 ] 𝑑 (𝑣)

e𝑢 . Then, ¤x is an unbiased estimator of 𝝅𝑠 , i.e., 𝐸 [ ¤x] = 𝝅𝑠 .

Note that all the above three estimators can be easily generalized for arbitrary source distribution

𝝈 , which we will discuss in Section 3 and Section 4.

Loop-erased 𝛼-random walk. In order to sample spanning forests from the desired probability

distribution, a loop-erased 𝛼-random walk sampling algorithm was proposed in [28] which is a

generalization of the classic Wilson algorithm [45]. The algorithm is outlined in Algorithm 1. First,

the algorithm fixes an ordering of𝑉 (Line 2). Then, it traverses all the nodes following this ordering

(Line 3-14). It makes use of an array 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 to record whether a node has been added into the

spanning forest, uses an array 𝑁𝑒𝑥𝑡 to maintain the next node in the spanning forest, and utilizes

an array 𝑅𝑜𝑜𝑡 to store the root information. An 𝛼-random walk is simulated until it stops or hits

the former trajectories (Line 4-10), and the loops in the walk are erased by retracing the trajectories

(Line 11-14). The time complexity of Algorithm 1 is
1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢), which is smaller than sampling

𝑛 𝛼-random walks (i.e.,
𝑛
𝛼
) [28]. When the algorithm terminates, a spanning forest 𝐹 is maintained

in 𝑅𝑜𝑜𝑡 with probability 𝑃 (𝐹 ) ∝∏
𝑢∈𝜌 (𝐹 )

𝛼
1−𝛼𝑑𝑜𝑢𝑡 (𝑢).
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Algorithm 1: Loop-erased 𝛼-random walk [28]

Input: A graph𝐺 = (𝑉 , 𝐸 ) and a decay parameter 𝛼

Output: 𝑅𝑜𝑜𝑡 [𝑢 ] for all 𝑢 ∈ 𝑉
1 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] ← 𝑓 𝑎𝑙𝑠𝑒 , 𝑁𝑒𝑥𝑡 [𝑢 ] ← −1, 𝑅𝑜𝑜𝑡 [𝑢 ] = −1 for 𝑢 ∈ 𝑉 ;

2 Fix an arbitrary ordering (𝑣1, · · · , 𝑣𝑛 ) of𝑉 ;

3 for 𝑖 = 1 : 𝑛 do
4 𝑢 = 𝑣𝑖 ;

5 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] do
6 if 𝑟𝑎𝑛𝑑 ( ) < 𝛼 then
7 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] ← 𝑡𝑟𝑢𝑒 , 𝑅𝑜𝑜𝑡 [𝑢 ] ← 𝑢;

8 else
9 𝑁𝑒𝑥𝑡 [𝑢 ] ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑢 ) ;

10 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢 ];

11 𝑟 ← 𝑅𝑜𝑜𝑡 [𝑢 ], 𝑢 ← 𝑣𝑖 ;

12 while !𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] do
13 𝐼𝑛𝐹𝑜𝑟𝑒𝑠𝑡 [𝑢 ] ← 𝑡𝑟𝑢𝑒 , 𝑅𝑜𝑜𝑡 [𝑢 ] ← 𝑟 ;

14 𝑢 ← 𝑁𝑒𝑥𝑡 [𝑢 ];

15 return 𝑅𝑜𝑜𝑡 [𝑢 ] for all 𝑢 ∈ 𝑉 ;

Forward search. As shown in Algorithm 2, the forward search method can be deemed as a

deterministic version of 𝛼-random walk sampling [1]. It maintains the residues r̂(𝑢) and reserves

�̂�𝝈 (𝑢) for all 𝑢 ∈ 𝑉 , where r̂ and �̂�𝝈 are initialized as 𝝈 and 0 respectively (Lines 1). The algorithm

performs a deterministic traversal on the graph and updates r̂ and �̂�𝝈 accordingly (Lines 2-6).

Specifically, for each node 𝑢 with residual larger than 𝑑𝑜𝑢𝑡 (𝑢) · 𝑟𝑚𝑎𝑥 , it converts 𝛼 fraction of 𝑢’s

residual into its reserve (Line 3), and equally distributes the other 1 − 𝛼 fraction of 𝑢’s residual to

its out-neighbors (Line 5-6). During this procedure, an invariant is maintained for all 𝑢 ∈ 𝑉 [1]:

𝝅𝝈 (𝑢) = �̂�𝝈 (𝑢) +
∑︁
𝑣∈𝑉

r̂(𝑣)𝝅𝑣 (𝑢). (1)

It was shown that the algorithm runs in 𝑂 (1/𝑟𝑚𝑎𝑥 ) time [1]. When 𝑟𝑚𝑎𝑥 approaches 0, �̂�𝝈 (𝑢)
converges to 𝝅𝝈 (𝑢). Moreover, it is easy to see that Algorithm 2 can also be used for any source

distribution.

2.2 The State-of-the-art Solutions
For single-source PPR query, Wang et al. proposed FORA [43] which combines forward search

and 𝛼-random walk sampling. Specifically, to answer a query for 𝝅𝑠 , it first performs a forward

search, then generates 𝛼-random walks from those nodes with non-zero residues. ResAcc [29] and
SpeedPPR [46] further improved FORA by accumulating residues and combining power iterations

with forward search. SpeedPPR outperforms all former approximate PPR computation algorithms

on directed graphs. However, all these algorithms perform poorly when 𝛼 is small (e.g., 𝛼 = 0.01). To

address the small𝛼 case, Liao et al. [28] proposed SpeedL and SpeedLV to further improve SpeedPPR
by combining forward push with spanning forests sampling. When the graph is undirected, SpeedL
and SpeedLV can achieves the state-of-the-art performance for the small 𝛼 case.

Unlike single-source personalized PageRank computation, algorithms for PageRank centrality

computation are less well studied. Note that 𝝅 =
∑
𝑠∈𝑉

1

𝑛
𝝅𝑠 , 𝝅 can be simply estimated by first

uniformly sampling a node 𝑢 ∈ 𝑉 , and then running an 𝛼-random walk from 𝑢. Suppose that

the walk stops at 𝑡 , then e𝑡 is an unbiased estimator of 𝝅 . To our knowledge, one of best existing

approximate algorithms that is tailored to PageRank centrality computation is such a Monte Carlo

solution proposed in [3]. Note that FORA can also be extended to PageRank centrality computation

[42], which we will add for comparison in our experiments (see Section 5.4).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 160. Publication date: June 2023.



160:6 Meihao Liao et al.

Algorithm 2: Forward Search [1]

Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , threshold 𝑟max

Output: Residual vector r̂ and estimation vector �̂�𝝈
1 r̂← 𝝈 , �̂�𝝈 ← 0;
2 while ∃𝑢 ∈ 𝑉 such that r̂(𝑢 ) ≥ 𝑑𝑜𝑢𝑡 (𝑢 ) · 𝑟𝑚𝑎𝑥 do
3 �̂�𝝈 (𝑢 ) ← �̂�𝝈 (𝑢 ) + 𝛼 r̂(𝑢 ) ;
4 for each 𝑤 ∈ 𝑁𝑜𝑢𝑡 (𝑢 ) do
5 r̂(𝑤 ) ← r̂(𝑤 ) + (1 − 𝛼 ) r̂(𝑢)

𝑑𝑜𝑢𝑡 (𝑢) ;

6 r̂(𝑢 ) ← 0;

7 return r̂, �̂�𝝈 ;

Algorithm 3:MCW [3]

Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , sample size𝑇

Output: The estimated PageRank vector �̂�𝝈
1 �̂�𝝈 ← 0;
2 for 𝑖 = 1 : 𝑇 do
3 Sample a node 𝑠′ from 𝝈 ;
4 Run an 𝛼-random walk from 𝑠′ ; suppose that it stops at 𝑡 ;
5 �̂�𝝈 (𝑡 ) ← �̂�𝝈 (𝑡 ) + 1

𝑇
;

6 return �̂�𝝈 ;

3 NEW 𝛼-RANDOMWALK ESTIMATORS
In this section, we first conduct a detailed analysis for the variance of the traditional 𝛼-random

walk (𝛼-RW) estimator x̄. Then, we develop two novel variance reduction techniques to reduce the

variance of x̄. Our first technique is to apply power iterations to reduce the variance, while the

second technique is to utilize the historical information of former samples to reduce the variance.

3.1 Variance Analysis of 𝛼-RW Estimator
Although the 𝛼-random walk sampling is widely used to estimate a single-source personalized

PageRank vector 𝝅𝑠 , it is easy to extend it to estimate PPR vector with any source distribution 𝝈 .
Specifically, similar to Lemma 2.2, we have the following results. Due to the space limit, all the

proofs can be found in the full version of this paper [2].

Lemma 3.1. Let x̄ be a vector of random variables. If an 𝛼-random walk starts from a node sampled
from 𝝈 and stops at node 𝑡 , we set x̄ = e𝑡 . Then, x̄ is an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [x̄] = 𝝅𝝈 .

Based on Lemma 3.1, we can easily obtain a basic Monte Carlo algorithm [3], namely MCW,

which is shown in Algorithm 3. If we have built an alias table [37] from 𝝈 , the process of sampling

a node from a certain distribution (Line 3) can be implemented via an alias sampling process using

𝑂 (1) time. Thus, each walk can be simulated within 𝑂 ( 1

𝛼
) time in expectation. We derive the

variance of x̄ as follows.

Lemma 3.2. Suppose that we simulate 𝛼-random walks from a node sampled from 𝝈 , and use x̄ as
an unbiased estimator of 𝝅𝝈 . Then, the variance of the estimator x̄ is: 𝑉𝑎𝑟 [x̄] = 1 − ∥𝝅𝝈 ∥22.

According to Lemma 3.2, the variance of x̄ is closely related to the distribution 𝝅𝝈 . Since ∥𝝅𝝈 ∥1 =
1, we have

1

𝑛
≤ ∥𝝅𝝈 ∥22 ≤ 1. When 𝝅𝝈 is a one-hot distribution (i.e., 𝝈 = e𝑠 and 𝝅𝝈 = e𝑠 , which is

the case that there is no outgoing-edge from 𝑠), we have 𝑉𝑎𝑟 [x̄] = 1 − 1 = 0. In this case, each

𝛼-random walk starts from 𝑠 can only stop at 𝑠 . Thus, the estimation of such a PPR vector is

easy. However, when 𝝅𝝈 is a "balanced" distribution (i.e.,
®1
𝑛
, the all-one distribution), the variance

becomes 𝑉𝑎𝑟 [x̄] = 1 −∑𝑡 ∈𝑉 (𝝅𝝈 (𝑡))2 = 1 − 1

𝑛
. Clearly, such a case is the hardest case to estimate

the PPR vector using 𝛼-random walk sampling.
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Fig. 1. Illustration of the variances of different esti-
mators. Here both 𝑥1 and 𝑥2 are unbiased estimators
of 𝝅𝝈 (𝑣2) and 𝑉𝑎𝑟 [𝒙2] < 𝑉𝑎𝑟 [𝒙1].
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(c) The estimation value of x̄, x̄⟨1⟩ and x̄⟨4⟩

Fig. 2. A running example of the estimator x̄⟨𝐾 ⟩ . (a)
An example graph𝐺 ; (b) The exact value of the PPR
vector 𝝅1 (𝛼 = 0.2); (c) Suppose that an 𝛼-random
walk starts from 𝑣1 and stops at 𝑣2, the estimation
values of x̄, x̄⟨1⟩ and x̄⟨4⟩ are depicted. Compared to
x̄, the estimation values of x̄⟨1⟩ and x̄⟨4⟩ are closer to
the exact value, which results in smaller variances.

Note that the variance plays an important role in sampling-based approximate algorithms. To

illustrate this, we give an example in Fig. 1. Suppose that both 𝒙1 and 𝒙2 are unbiased estimators

of 𝝅𝝈 (𝑣2) = 0.5, i.e., 𝐸 [𝒙1] = 𝐸 [𝒙2] = 𝝅𝝈 (𝑣2). In practice, to achieve a high accuracy, approximate

algorithms always draw a number of samples and take the average value over all samples as an

estimator. As shown in Fig. 1, the sample value of 𝒙2 is close to each other, thus𝑉𝑎𝑟 [𝒙2] < 𝑉𝑎𝑟 [𝒙1].
Although they have the same expectation value, with 5 samples, the estimation value of 𝒙1 is 0.4

while the estimation value of 𝒙2 is 0.49, which is closer to the exact value. Estimator with smaller

variance requires less samples to achieve a desired accuracy, thus reducing the running time for

drawing samples. The worst-case time complexity of Algorithm 3 to guarantee an (𝜖, 𝛿)-error is
𝑂 ( 𝑛𝑙𝑜𝑔𝑛

𝜖2
), by the standard Chernoff bound [43]. Below, we will propose two novel ideas to reduce

the variance of x̄. We show that the variance reduction of our technique is substantial with only

few additional time costs.

3.2 Variance Reduction by Power Iterations
The intuition of our first technique is that the closer an estimator is concentrated around 𝝅𝝈 ,

the smaller the variance of the estimator is. According to the property of the power iterations,

applying more power iterations on any vector x (i.e., x(𝑡+1) = 𝛼𝝈 + (1 − 𝛼)Px(𝑡 ) ) will make the

result converge towards 𝝅𝝈 . This motivates us to use power iterations to reduce the variance of

the estimator x̄, since performing power iterations can make the estimator x̄ close to 𝝅𝝈 . Note that

a power iteration only requires a traversal of all edges once which takes 𝑂 (𝑚) time. On real-life

scale-free graphs, we often have 𝑂 (𝑚) = 𝑂 (𝑛 log𝑛), thus it is negligible compared to the 𝑂 ( 𝑛 log𝑛

𝜖2
)

time complexity of Algorithm 3.

Warm up: using one power iteration. We first consider the simple case that we apply only one

power iteration to reduce the variance of the estimator x̄. Recall that according to the definition of

the PageRank vector, 𝝅𝝈 satisfies the recursive formula: 𝝅𝝈 = 𝛼𝝈 + (1 − 𝛼)P𝝅𝝈 . Then, we have the

following result.

Lemma 3.3. Let x̄ be an unbiased estimator of 𝝅𝝈 . Then, x̄⟨1⟩ = 𝛼𝝈 + (1 − 𝛼)Px̄ is also an unbiased
estimator of 𝝅𝝈 .

By Lemma 3.3, we can construct a new estimator x̄⟨1⟩ based on the estimator x̄. Recall that to
derive x̄, we need to add a mass of 1 on 𝑡 if an 𝛼-random walk stops at the node 𝑡 . To construct x̄⟨1⟩ ,
however, we add 𝛼 times the source distribution back to the corresponding nodes, and update 𝑡 ’s
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Algorithm 4: PW
Input: graph𝐺 , source distribution 𝝈 , decay factor 𝛼 , power iteration number 𝐾 , sample size𝑇

Output: Estimated PageRank vector �̂�𝝈
1 �̂�𝝈 ←MCW (𝐺 , 𝝈 , 𝛼 ,𝑇 );

2 �̂�𝝈 ←
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼 )𝑘P𝑘𝝈 + (1 − 𝛼 )𝐾P𝐾 �̂�𝝈 ;

3 return �̂�𝝈 ;

out-neighbors by adding
1−𝛼

𝑑𝑜𝑢𝑡 (𝑡 ) on their estimations. In other words, the new estimator uniformly

distributes 1 − 𝛼 times of the probability mass to 𝑡 ’s out-neighbors. This operation can reduce the

variance of the estimator x̄. Fig. 2 shows a running example for x̄⟨1⟩ . To estimate the PPR vector

𝝅1 on the example graph 𝐺 (𝛼 = 0.2), when an 𝛼-random walk starts from 𝑣1 and stops at 𝑣2, the

estimator x̄ adds 1 on the termination node 𝑣2. For comparison, x̄⟨1⟩ first adds the source node 𝑣1

by 𝛼 = 0.2, then instead of adding amount on the termination node 𝑣2, it adds (1 − 𝛼)/𝑑𝑜𝑢𝑡 (𝑣2)
on the out-neighbors (𝑣3, 𝑣4) of the termination node 𝑣2. The resulting estimation value of x̄⟨1⟩ is
closer to the exact value compared to x̄, which results in a smaller variance. The following lemma

shows that given an arbitrary unbiased estimator x, applying one power iteration on it will obtain

a new estimator that has variance (1 − 𝛼)2 times smaller than the original estimator x.

Lemma 3.4. Let x be an unbiased estimator of 𝝅𝝈 . Suppose that x satisfies ∥x∥2
2
≤ ∥Px∥2

2
. Let

x⟨1⟩ = 𝛼𝝈 + (1 − 𝛼)Px. Then, we have 𝑉𝑎𝑟 [x⟨1⟩] ≤ (1 − 𝛼)2𝑉𝑎𝑟 [x].

Reducing variance by 𝐾-power iterations. Given that applying one power iteration can reduce

variance, a natural idea is to extend it by using 𝐾 power iterations to further reduce variance. First,

we prove that there is a similar invariant by iteratively applying 𝝅𝝈 = 𝛼𝝈 + (1−𝛼)P𝝅𝝈 for 𝐾 times.

Then, a new unbiased estimator can be derived by such an invariant formula.

Lemma 3.5. For any 𝐾 > 0, we have

𝝅𝝈 =

𝐾−1∑︁
𝑘=0

𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾𝝅𝝈 . (2)

Lemma 3.6. Suppose that an 𝛼-random walk starts from a node 𝑠 sampled from distribution 𝝈 and
stops at 𝑡 . Then, for any 𝐾 > 0, x̄⟨𝐾 ⟩ =

∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾e𝑡 is an unbiased estimator

of 𝝅𝝈 .

Furthermore, we can easily derive an upper bound of𝑉𝑎𝑟 [x̄⟨𝐾 ⟩] by iteratively applying Lemma 3.4

for 𝐾 times.

Lemma 3.7. 𝑉𝑎𝑟 [x̄⟨𝐾 ⟩] ≤ (1 − 𝛼)2𝐾 (1 − ∥𝝅𝜎 ∥22).

For example, in Fig. 2, by iteratively applying the power iteration for four times, the resulting

estimation value of x̄⟨4⟩ is much closer to the exact PPR vector 𝝅𝝈 compared to x̄⟨1⟩ . This indicates
that the estimator x̄⟨4⟩ has a smaller variance compared to x̄⟨1⟩ .

Note that the first term in the right hand side of Eq. (2) can be seen as an estimation of 𝝅𝝈 . And

we have ∥𝝅𝝈 −
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 ∥1 = (1 − 𝛼)𝐾 . Clearly, when 𝐾 becomes large, the 𝐿1-error

of the first term is very small. For x̄⟨𝐾 ⟩ , we only need to approximate the small error part (the

second term of Eq. (2)), since the first term can be computed deterministically. For an 𝛼-random

walk sample, we assume that it stops at the node 𝑡 , then the estimator deterministically propagates

e𝑡 on the graph for 𝐾 steps to estimate the second term. Clearly, if there are 𝑇 𝛼-random walk

samples and 𝑇 is large, the total time costs of this procedure may be high. A nice trick to tackle

this problem is that we can first sample 𝑇 𝛼-random walk samples, and then deterministically
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propagate the values of the 𝛼-random walk estimator on the graph for 𝐾 steps (i.e., performing 𝐾

power iterations). By the linearity of the PPR vector, it can be shown that such a procedure can

exactly obtain the same estimator as that based on x̄⟨𝑘 ⟩ .

Lemma 3.8. Let �̂�𝝈1 be the estimation vector obtained by applying x̄ for 𝑇 times and take the
average, and then applying 𝐾-power iterations on the results. Let �̂�𝝈2 be the estimation vector obtained
by applying x̄⟨𝐾 ⟩ for 𝑇 times and take the average. Then, we have �̂�𝝈1 = �̂�𝝈2.

A Monte Carlo algorithm PW based on the estimator x̄⟨𝐾 ⟩ is outlined in Algorithm 4. The

algorithm follows a "first walk, and then propagate" framework. Note that this framework is

fundamentally different from the state-of-the-art bidirectional approaches [32, 43, 46] which are

based on the "first propagate, and then walk" framework. Specifically, Algorithm 4 first simulates𝑇

𝛼-random walks to derive an estimation �̂�𝝈 of 𝝅𝝈 (Line 1). Then, 𝐾 power iterations are applied on

�̂�𝝈 to construct the final estimator. Since each power iteration takes𝑂 (𝑚) time, the time complexity

of PW can be easily derived.

Lemma 3.9. The time complexity of Algorithm 4 is 𝑂 (𝑇
𝛼
+ 𝐾𝑚).

Note that PW is extremely simple. However, the performance of PW is competitive with the

state-of-the-art bidirectional algorithms as shown in our experiments. We can utilize the following

Chernoff inequality to bound the sample size of Algorithm 4 to guarantee an (𝜖, 𝛿)-error.
Lemma 3.10. (Chernoff bound) Let𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛𝑟 ) be independent random variables satisfying𝑋𝑖 ≤

𝑀 for 1 ≤ 𝑖 ≤ 𝑇 . Let𝑋 = 1

𝑇

∑
𝑖=1
𝑋𝑖 . Assume that 𝐸 [𝑋 ] be the expectation of𝑋 , ∥𝑋 ∥2 = 1

𝑇

∑𝑇
𝑖=1
𝐸 [𝑋 2

𝑖 ].
Then we have

Pr( |𝑋 − 𝐸 [𝑋 ] | ≥ _) ≤ 𝑒𝑥𝑝 (− _2𝑇

2(∥𝑋 ∥2 +𝑀_/3) ) .

Lemma 3.11. Let𝑊 =
(2𝜖/3+2) log(2/𝑝𝑓 )

𝜖2 ·` . For any node 𝑡 with 𝝅𝝈 (𝑡) > `, when 𝐾 > 𝑙𝑜𝑔1−𝛼` and
𝑇 > (1 − 𝛼)𝐾𝑊 , Algorithm 4 returns an approximate PPR value �̂�𝝈 (𝑡) satisfying |�̂�𝝈 (𝑡) − 𝝅𝝈 (𝑡) | ≤
𝜖𝝅𝝈 (𝑡) with probability at least 1 − 𝑝 𝑓 .

The analysis of Lemma 3.9 and Lemma 3.11 is general. For example, if the graph has𝑚 = 𝑂 (𝑛 3

2 )
edges, the time complexity of PW is O(

𝑇
𝛼
+ 𝐾𝑛 3

2 ). In practice, real-life scale-free graphs with

𝑚 = 𝑂 (𝑛 log𝑛) is of special interest. Since most previous studies [43, 46] consider scale-free graphs,

we also focus on such graphs for a fair comparison. Also, we set 𝑝 𝑓 = 1

𝑛
, ` = 1

𝑛
to ensure a

relatively-accurate estimation result. This parameter setting is also widely adopted in previous

work [43, 46]. With these parameter setting, we can easily derive the following Corollary from

Lemma 3.11.

Corollary 1. Suppose that 𝑚 = 𝑂 (𝑛 log𝑛), 𝑝 𝑓 = 1

𝑛
, ` = 1

𝑛
, Algorithm 4 can achieve an

(
√︃
𝑛 log𝑛 (1−𝛼 )𝐾

𝑇
, 1

𝑛
)-error with probability larger than 1 − 1

𝑛
.

According to Corollary 1, we can vary 𝑇 and 𝐾 ; as long as 𝜖 =

√︃
𝑛 log𝑛 (1−𝛼 )𝐾

𝑇
is a constant, the

same error guarantee holds. The time complexity is 𝑂 (𝑇
𝛼
+ 𝐾𝑚) = 𝑂 (( (1−𝛼 )

𝐾

𝛼𝜖2
+ 𝐾)𝑛 log𝑛), which

is minimized when 𝐾 = log
1−𝛼

𝛼

𝑙𝑛 1

1−𝛼
𝜖2 = 𝑂 (log

1−𝛼 𝜖
2). In this case, 𝑇 = 𝑂 (𝑛 log𝑛), the overall

time complextiy is 𝑂 (𝑛 log𝑛 log
1

𝜖
). For example, when 𝛼 = 0.2, if we set 𝑇 = 𝑛 log𝑛, 𝐾 ≈ 6, then

we can guarantee a relative error 𝜖 = 0.5 with probability 1 − 1

𝑛
. Moreover, from an engineering

point of view, we can balance the running time of random walks and power iterations to achieve a

better empirical performance. Similar balance strategy was also adopted in previous work [43, 46].
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For example, suppose that we have set 𝑇 = 𝑛 log𝑛, 𝐾 = log
1−𝛼 𝜖

2
according to the theoretical

analysis. However, in practice, the running time of simulating random walks may be longer than

running power iterations with this parameter setting. Then, we can adaptively reset𝑇 as
𝑛 log𝑛

10
and

𝐾 = log
1−𝛼

𝜖2

10
. According to Corollary 1, the same error guarantee still holds, while the empirical

running time of the algorithm to achieve the same relative error 𝜖 can be reduced.

The 𝑂 (𝑛 log𝑛 log
1

𝜖
) time complexity of PW achieves the best time complexity as the state-of-

the-art SpeedPPR algorithm for approximating single-source personalized PageRank query [46].

To our knowledge, only our algorithms and SpeedPPR can achieve the 𝑂 (log
1

𝜖
) complexity. When

𝛼 becomes smaller, the time of random walk phase grows with 𝑂 ( 1

𝛼
), which is also the same as

SpeedPPR. However, in their implementations, the SpeedPPR algorithm involves a very complicated

procedure which combines forward push, power iterations and 𝛼-random walks. Specifically, it

first invokes local push, and uses a queue to maintain active nodes; when the size of the queue

exceeds a threshold, it turns into sequential scan (power iteration), and uses dynamic threshold

to decide a node to push. The queue threshold and the dynamic threshold need carefully design.

Their implementation is also highly optimized with some smart data structures. For comparison,

our algorithm is extremely simple, we only need to simulate a number of 𝛼-random walks, and

then conduct a few basic power iterations on the obtained estimation. The implementation code is

within 20 lines. As indicated in our experiments, the performance of PW is better than SpeedPPR
with the same relative error guarantee (see Fig. 7).

3.3 Variance Reduction Using Former Samples
Since applying one power iteration can reduce the variance of an estimator by a factor of (1 − 𝛼)2,
it is efficient when 𝛼 is relatively large (e.g., 𝛼 = 0.2). However, when 𝛼 is relatively small (e.g.,

𝛼 = 0.01), it may require a number of power iterations to achieve a significant variance reduction.

To tackle this problem, we propose a novel technique to further reduce the variance by using the

historical information of the former samples.

The traditional 𝛼-random walk sampling algorithm does not consider the historical information

of former samples. That is, we do the same thing when we draw the 1-st sample as when we draw

the 1000-th sample. A question is that, can we utilize the former samples to reduce the variance of

the estimator? First, we show that a similar invariant equation as Eq. (1) in forward search also

holds for any estimated vector �̂�𝝈 .

Lemma 3.12. Suppose that �̂�𝝈 is an estimated PageRank vector, and r̂ is the corresponding residual
vector, where r̂ = 𝝈 + 1−𝛼

𝛼
P�̂�𝝈 − 1

𝛼
�̂�𝝈 . Then, for all 𝑡 ∈ 𝑉 , �̂�𝝈 (𝑡) satisfies the following equation:

𝝅𝝈 (𝑡) = �̂�𝝈 (𝑡) +
∑︁
𝑢∈𝑉

r̂(𝑢)𝝅𝑢 (𝑡). (3)

Note that a key difference between Eq. (1) and Eq. (3) is that the residual values in Eq. (3) can be

either positive or negative. Given an estimated PageRank vector �̂�𝝈 , computing the corresponding

residual vector is not hard (the time cost is the same as that of performing one power iteration,

i.e., 𝑂 (𝑚)). Based on such an invariant formula, we can build a novel estimator conditioned on the

residual vector. Given a vector �̂�𝝈 as the current estimation, let ê denote the error vector which is

defined as ê = 𝝅𝝈 − �̂�𝝈 . According to Lemma 3.12, ê = 𝚷r̂ is a linear combination of the residual

vector, where the linear coefficient is the personalized PageRank values. Let |r̂| be a vector where
each element |r̂| (𝑢) = |r̂(𝑢) | (the absolute value). Note that 𝚷r̂ can be estimated using 𝛼-random

walk sampling with a source distribution
| r̂ |
∥ r̂∥1 . Thus, the error vector ê can also be estimated by such

an 𝛼-random walk sampling procedure. We also define the operator 𝑠𝑔𝑛(𝑥) as the sign operator

which equals 1 when 𝑥 > 0 and equals −1 when 𝑥 ≤ 0. Formally, we have the following results.
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Fig. 3. A running example of the estimator x̄𝝅𝝈 on𝐺 . (a) Given a current estimation �̂�1 = [0.2, 0.34, 0.23, 0.23]𝑇 ,
the corresponding residual vector 𝒓 is [0, 0.02,−0.01,−0.01]𝑇 . The invariant 𝝅1 (𝑢) = �̂�1 (𝑢) + 0.04( 1

2
𝝅2 (𝑢) −

1

4
𝝅3 (𝑢) − 1

4
𝝅4 (𝑢)) holds for 𝑢 = 𝑣1, 𝑣2, 𝑣3, 𝑣4; (b) x̄𝝅𝝈 selects 𝑣2, 𝑣3 and 𝑣4 with probability 1

2
, 1

4
, 1

4
to start

𝛼-random walks respectively. Suppose that 𝑣2 is chosen, the 𝛼-random walk starts from 𝑣2 and stops at 𝑣4,
the estimation value of x̄�̂�1

is depicted.

Lemma 3.13. Denote by �̂�𝝈 an estimated PageRank vector, r̂ = 𝝈 + 1−𝛼
𝛼

P�̂�𝝈 − 1

𝛼
�̂�𝝈 is the corre-

sponding residual vector. Suppose that we sample a source node 𝑠′ from the distribution | r̂ |
∥ r̂∥1 , and

an 𝛼-random walk starts from 𝑠′ and stops at 𝑡 . Then, x̄�̂�𝝈 = �̂�𝝈 + 𝑠𝑔𝑛(r̂(𝑠′))∥r̂∥1e𝑡 is an unbiased
estimator of 𝝅𝝈 .

Fig. 3 shows a running example of x̄�̂�𝝈 on the example graph 𝐺 in Fig. 2. Suppose that we have

obtained a current estimation �̂�1 = [0.2, 0.34, 0.23, 0.23]𝑇 , which is already near to the exact value

of 𝝅1. We can compute the corresponding residual vector 𝒓 = [0, 0.02,−0.01,−0.01]𝑇 . Then, the
invariant 𝝅1 (𝑢) = �̂�1 (𝑢) + 0.04( 1

2
𝝅2 (𝑢) − 1

4
𝝅3 (𝑢) − 1

4
𝝅4 (𝑢)) holds for 𝑢 = 𝑣1, 𝑣2, 𝑣3, 𝑣4. x̄𝝅1

first

selects 𝑣2, 𝑣3 and 𝑣4 with probability
1

2
,

1

4
,

1

4
respectively, then starts 𝛼-random walks from the

selected node. Suppose that 𝑣2 is chosen and the 𝛼-random walk starts from 𝑣2 and stops at 𝑣4.

Then, the estimation value x̄𝝅1
= �̂�1 + [0, 0, 0,−∥𝒓 ∥1]𝑇 (∥𝒓 ∥1 = 0.04). Since �̂�1 is already close to

the exact value, ∥𝒓 ∥1 can be very small, which results in a small variance. The novel estimator

x̄�̂�𝝈 inspires us to design a new algorithm for estimating 𝝅𝝈 . We can first simulate some burn-up
random walks to obtain a PPR estimation �̂�𝝈 . Then, we compute the corresponding residual vector

r̂, and run more random walks by sampling nodes from the normalized residual distribution and

starts 𝛼-random walks from those nodes. Intuitively, if the estimated PageRank �̂�𝝈 is close to 𝝅𝝈 ,

the norm of the correspond residual vector r̂ will be small, which results in a new estimator with a

smaller variance. Formally, we have

Lemma 3.14. Let �̂�𝝈 be a PPR estimation, r̂ be its corresponding residual vector, then 𝑉𝑎𝑟 [x̄�̂�𝝈 ] =
∥r̂∥2

1
(1 − ∥𝚷 r̂

∥ r̂∥1 ∥2).

Corollary 2. Let𝚷 denote the personalized PageRank matrix. Let �̂�𝝈1, �̂�𝝈2 be two PPR estimations
with the corresponding residual vector r̂1, r̂2. If ∥r̂1∥21 (1 − ∥𝚷

r̂1

∥ r̂1 ∥1 ∥
2

2
) ≤ ∥r̂2∥21 (1 − ∥𝚷

r̂2

∥ r̂2 ∥1 ∥
2

2
), then

𝑉𝑎𝑟 [x̄�̂�𝝈1 ] ≤ 𝑉𝑎𝑟 [x̄�̂�𝝈2 ]. Specifically, compared to the basic 𝛼-random walk sampling estimator x̄
where the corresponding residual vector is 𝝈 , x̄�̂�𝝈 is an estimator defined above with residual vector r.
If ∥r̂∥2

1
(1 − ∥𝚷 r̂

∥ r̂∥1 ∥
2

2
) ≤ 1 − ∥𝝅𝝈 ∥22, then 𝑉𝑎𝑟 [x̄�̂�𝝈 ] ≤ 𝑉𝑎𝑟 [x̄].

Corollary 2 gives the condition when the variance is reduced: the 1-norm of the residual vector

(the sum of all the absolute values of the residuals) is reduced. Based on this, we can develop a

progressive 𝛼-random walk sampling algorithm to implement such a historical-information-aided

variance reduction technique. Moreover, we show that such a progressive 𝛼-random walk sampling

technique can be easily integrated with our power-iteration technique developed in Section 3.2 to

further reduce the variance of the estimator.

The resulting algorithm PPW is outlined in Algorithm 5. The 𝛼-random walk samples are divided

into several batches and an additional parameter 𝐵 is used to control the batch size. In each batch,

we first compute the residual vector r̂ corresponding to the current estimation (Line 3), then we

adapt the source distribution to
| r̂ |
∥ r̂∥1 , and start 𝛼-random walks from nodes sampled from such a
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Algorithm 5: PPW
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , power iteration number 𝐾 , sample size𝑇 , batch size 𝐵

Output: The estimated PageRank vector �̂�𝝈
1 �̂�𝝈 ← 0, r← 𝝈 ;
2 for 𝑖 = 1 : 𝐵 do
3 r̂← 𝝈 + 1−𝛼

𝛼
𝑃 �̂�𝝈 − 1

𝛼
�̂�𝝈 ;

4 for 𝑖 = 1 : ⌈𝑇 /𝐵⌉ do
5 Sample a node 𝑠′ from probability distribution

|r̂|
∥r̂∥

1

;

6 Run an 𝛼-random walk from 𝑠′ ; suppose that it stops at 𝑢;

7 �̂�𝝈 (𝑢 ) ← �̂�𝝈 (𝑢 ) + 𝑠𝑔𝑛 (r̂(𝑠′ ) ) ∥r̂∥1⌈𝑇 /𝐵⌉ ;

8 �̂�𝝈 ←
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼 )𝑘P𝑘𝝈 + (1 − 𝛼 )𝐾P𝐾 �̂�𝝈 ;

9 return �̂�𝝈 ;

distribution (Line 4-7). After that, we perform 𝐾 power iterations to reduce the variance of the

estimator obtained in each batch (Line 8). Note that when the batch size as well as the sample size is

set properly, every adaption to the source distribution is expected to reduce the variance. Together

with the power iteration technique, we can often obtain a very good estimator for the PPR vector

as shown in our experiments.

Lemma 3.15. The time complexity of Algorithm 5 is𝑂 (𝑇
𝛼
+𝐾𝑚 + 𝐵𝑚). In practice, 𝐵 is often treated

as a small constant, thus it can be simplified as 𝑂 (𝑇
𝛼
+ 𝐾𝑚).

Lemma 3.16. Suppose that ∥𝒓 ∥1 < 1 in the last batch, Algorithm 5 can achieve an (𝜖, 1

𝑛
)-error with

probability higher than 1 − 1

𝑛
in time 𝑂 (𝐵 · 𝑛 log𝑛 log

1

𝜖
). In practice, 𝐵 is often treated as a small

constant, thus it can be simplified as 𝑂 (𝑛 log𝑛 log
1

𝜖
).

Lemma 3.16 shows that by properly setting the number of batches 𝐵 (usually a small constant

such as 𝐵 = 3 in practice), the variance of PPW is lower than PW and the same error and time

complexity can also be guaranteed as PW (by a similar analysis of Lemma 3.11). Although PPW has

the same complexity as SpeedPPR, PPW is easier to implement and also much more accurate than

SpeedPPR, as shown in our experiments. Moreover, PPW is based on two totally new and powerful

ideas (“first walk, then propagate” and “progressively sampling”) which could be of independent

interests.

4 NEW SPANNING FORESTS ESTIMATORS
When 𝛼 is small, the expected length of the 𝛼-random walk can be very long, rendering the time

cost for drawing a sample very high. To address this problem, Liao et al. [28] developed a spanning

forests (SF) sampling technique which was shown to be less sensitive to the parameter 𝛼 . However,

in [28], the variance of the SF based estimators did not analyzed. To fill this gap, we first theoretically

analyze the variance of the SF based estimators. Then, we propose two novel techniques to reduce

the variances of the SF based estimators.

4.1 Variance Analysis of SF Based Estimators
First, we show that the SF based estimators developed for single-source PPR query [28] (Lemma 2.3

and Lemma 2.4) can be easily extended for any source distribution 𝝈 . Let 𝐹 ∈ F be a random

rooted spanning forest and 𝜌 (𝐹 ) be the root set of 𝐹 . Suppose that 𝐹 is sampled with probability

𝑃 (𝐹 ) ∝∏
𝑢∈𝜌 (𝐹 )

𝛼
1−𝛼𝑑𝑜𝑢𝑡 (𝑢). Denote by𝑉𝜌 [𝑡 ] the connected component that 𝑡 belongs to. Then, we

have the following results.

Lemma 4.1. Let x̃ be a vector of random variables that is defined as x̃ =
∑
𝑡 ∈𝜌 (𝐹 )

∑
𝑢∈𝑉𝜌 [𝑡 ] 𝝈 (𝑢)e𝑡 .

Then, x̃ is an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [x̃] = 𝝅𝝈 . When the graph is undirected, we further
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define a vector of random variables ¤x as

¤x =
∑︁
𝑢∈𝑉

∑
𝑣∈𝑉𝜌 [𝑢 ] 𝝈 (𝑣)∑
𝑣∈𝑉𝜌 [𝑢 ] 𝑑 (𝑣)

𝑑 (𝑢)e𝑢 .

Then, ¤x is also an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [ ¤x] = 𝝅𝝈 .

As indicated in [28], the estimator ¤x has a smaller variance compared to ¤x. Below, we derive the
variances of these two estimators ([28] did not explicitly give the variances of these two estimators).

Lemma 4.2. Let Q denote the co-occurrence probability matrix where (Q)𝑖𝑖 = 1 for each node 𝑖 ∈ 𝑉 ,
and (Q)𝑖 𝑗 equals the probability that 𝑖 and 𝑗 have the same root in a rooted spanning forest 𝐹 sampled
with probability 𝑃 (𝐹 ) ∝∏

𝑢∈𝜌 (𝐹 )
𝛼

1−𝛼𝑑𝑜𝑢𝑡 (𝑢). Then, we have

𝑉𝑎𝑟 [x̃] = 𝝈𝑇Q𝝈 − ∥𝝅𝝈 ∥22.

If the underlying graph is undirected, by a similar analysis, we can derive an upper bound of

the variance of ¤x. Specifically, let (𝑞𝑑 )𝑖 𝑗 be a random variable defined as: if node 𝑖 and node 𝑗

belong to the same connected component of a random spanning forest 𝐹 sampled with probability

𝑃 (𝐹 ) ∝ ∏
𝑢∈𝜌 (𝐹 )

𝛼
1−𝛼𝑑 (𝑢), then (𝑞𝑑 )𝑖 𝑗 =

∑
𝑢∈𝑉𝜌 [𝑖 ] (𝑑 (𝑢 ) )

2

(∑𝑢∈𝑉𝜌 [𝑖 ] 𝑑 (𝑢 ) )2 , and (𝑞𝑑 )𝑖 𝑗 = 0 otherwise. Then, we have

the following result.

Lemma 4.3. Let Q𝑑 be a matrix where (Q𝑑 )𝑖 𝑗 is the expectation of the random variable (𝑞𝑑 )𝑖 𝑗 . Then,
we have 𝑉𝑎𝑟 [ ¤x] = 𝝈𝑇Q𝑑𝝈 − ∥𝝅𝝈 ∥22, and 𝑉𝑎𝑟 [ ¤x] < 𝑉𝑎𝑟 [x̃].

According to Lemma 4.2 and Lemma 4.3, the variance of the SF based estimators is not only

related to the objective distribution 𝝅𝝈 , but also depends on the source distribution 𝝈 . Note that
the expected time complexity of sampling an 𝛼-random walk is 𝜏𝑤𝑎𝑙𝑘 = 1

𝛼
, while the expected

time complexity of sampling a rooted spanning forest is 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 =
1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢). A direct result is

that 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 < 𝑛𝜏𝑤𝑎𝑙𝑘 . That is, the time for sampling one spanning forest is lower than sampling

𝑛 𝛼-random walks. When 𝛼 is small, the margin is larger. If 𝝈 is a one-hot distribution, i.e. e𝑠 ,
𝑉𝑎𝑟 [x̃] = (Q)𝑠𝑠 − ∥𝝅𝝈 ∥22 = 1 − ∥𝝅𝝈 ∥22, which is exactly equal to the variance of the 𝛼-random walk

based estimator x̄. However, sampling one 𝛼-random walk (
1

𝛼
) is obviously faster than sampling one

spanning forest (
1

𝛼

∑
𝑢∈𝑉 𝜋 (𝑢,𝑢)). Therefore, there is no advantage to use SF based estimator when

𝝈 is a one-hot distribution. However, when 𝝈 is a "balanced" distribution (i.e. ∥𝝈 ∥ gets smaller),

the variance of SF based estimator will become smaller while the variance of 𝛼-random walk based

estimator remains the same. Below, we analyze the special case when 𝝈 =
®1
𝑛
.

Variance analysis for the special case. When 𝝈 =
®1
𝑛
, we have 𝑉𝑎𝑟 [x̃] = 1

𝑛2

®1𝑇Q®1 − ∥𝝅𝝈 ∥22. Note
that the quantity

1

𝑛
®1𝑇Q®1 = 1

𝑛

∑
𝑢∈𝑉

∑
𝑣∈𝑉 𝑝

𝑟 (𝑢, 𝑣) = 1

𝑛

∑
𝑢∈𝑉 𝑛𝑢 , where 𝑝

𝑟 (𝑢, 𝑣) is the probability
that𝑢 and 𝑣 have the same root, and𝑛𝑢 is the expected number of nodes in the connected component

that 𝑢 belongs to. Denote by 𝑛𝑟 =
1

𝑛
®1𝑇Q®1 and by 𝑛𝑟𝑑 =

®1𝑇Q𝑑 ®1
𝑛

. Then, we have the following results.

Lemma 4.4. If 𝑛𝑟 <
𝜏𝑓 𝑜𝑟𝑒𝑠𝑡

𝑛𝜏𝑤𝑎𝑙𝑘
+ (𝑛 − 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡

𝑛𝜏𝑤𝑎𝑙𝑘
)∥𝝅𝝈 ∥22 = 𝑛∥𝝅𝝈 ∥22 +

𝜏𝑓 𝑜𝑟𝑒𝑠𝑡

𝑛𝜏𝑤𝑎𝑙𝑘
(1 − ∥𝝅𝝈 ∥22), the estimator x̃ is

better than 𝝅𝝈 . On undirected graphs, the estimator ¤x is strictly better than x̄.

Based on the SF-based estimators, we can easily devise two basic Monte Carlo algorithmsMCF
andMCFV (using the estimator ¤x for undirected graphs), which are shown in Algorithm 6. Note

that by our analysis, Algorithm 6 is ineffective when the source distribution is "unbalanced" (∥𝝈 ∥2
is large) and it is more suitable for a "balanced" distribution. Note that in [28], a forward push

procedure is applied firstly before using the SF-based estimators, which ensures that the desired

distribution is relatively "balanced", thus resulting in good performance in practice. Our analysis
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160:14 Meihao Liao et al.

Algorithm 6:MCF (MCFV)
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , sample size𝑇

Output: The estimated PageRank vector �̂�𝝈
1 �̂�𝝈 ← 0, r̂← 𝝈 ;
2 for 𝜔 = 1 : 𝑇 do
3 𝑟𝑜𝑜𝑡 ← Loop-earsed 𝛼-random walk sampling (𝐺 , 𝛼 );

4 for 𝑖 = 1 : 𝑛 do
5 if 𝐺 is undirected then

6 �̂�𝝈 (𝑖 ) ← �̂�𝝈 (𝑖 ) +
∑
𝑣∈𝑉𝜌 [𝑖 ] �̂� (𝑣)∑
𝑣∈𝑉𝜌 [𝑖 ] 𝑑 (𝑣)

𝑑 (𝑖 )
𝑇

;

7 else
8 �̂�𝝈 (𝑟𝑜𝑜𝑡 (𝑖 ) ) ← �̂�𝝈 (𝑟𝑜𝑜𝑡 (𝑖 ) ) + �̂� (𝑖 )

𝑇
;

9 return �̂�𝝈 ;

presented here provides a formal explanation for the cases under which SF-based estimators perform

better.

4.2 Reducing Variance by Power Iterations
Here we develop a power iteration approach to reduce the variances of SF-based estimators. Since

x̃ is an unbiased estimator of 𝝅𝝈 , we know that 𝛼𝝈 + (1 − 𝛼)Px̃ is also an unbiased estimator of 𝝅𝝈 .

Let 𝐹 ∈ F be a random rooted spanning forest and 𝜌 (𝐹 ) be the root set of 𝐹 . Denote by 𝑡 is a root
node and by 𝑉𝑡 the connected component that 𝑡 belongs to. Then, we have the following result.

Lemma 4.5. Let x̃⟨1⟩ = 𝛼𝝈 + (1 − 𝛼)∑𝑡 ∈𝜌 (𝐹 ) (
∑
𝑤∈𝑁𝑜𝑢𝑡 (𝑢 ) (

∑
𝑢∈𝑉𝑡 𝝈 (𝑢)/𝑑𝑜𝑢𝑡 (𝑡))e𝑤). Then, x̃⟨1⟩ is

an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [x̃⟨1⟩] = 𝝅𝝈 . On undirected graphs, we define ¤x⟨1⟩ as

¤x⟨1⟩ = 𝛼𝝈 + (1 − 𝛼)
∑︁
𝑢∈𝑉

∑︁
𝑤∈𝑁 (𝑢 )

∑
𝑣∈𝑉𝜌 [𝑢 ] 𝝈 (𝑣)∑
𝑣∈𝑉𝜌 [𝑢 ] 𝑑 (𝑣)

e𝑤 .

Then, ¤x⟨1⟩ is an unbiased estimator of 𝝅𝝈 , i.e., 𝐸 [ ¤x⟨1⟩] = 𝝅𝝈 .

Intuitively, after sampling a rooted spanning forest, the estimator x̃⟨1⟩ updates all the out-

neighbors of roots instead of only updating the roots. Also, the updates of ¤x⟨1⟩ on 𝑢 not only

considers the information within 𝑉𝜌 [𝑢 ] , but also the information of the neighbors of nodes in 𝑉𝜌 [𝑢 ] .
By Lemma 3.4, the variance of the resulting estimator is (1 − 𝛼)2 times smaller than the original

estimator. According to Lemma 3.6, this can be further extended to 𝐾 power iterations.

Lemma 4.6. For any 𝐾 > 0, x̃⟨𝐾 ⟩ =
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾 x̃ is an unbiased estimator

of 𝝅𝝈 . If the underlying graph is undirected, ¤x⟨𝐾 ⟩ = ∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼)𝑘P𝑘𝝈 + (1 − 𝛼)𝐾P𝐾 ¤x is also an

unbiased estimator of 𝝅𝝈 .

Lemma 4.7. 𝑉𝑎𝑟 [x̃⟨𝐾 ⟩] ≤ (1 − 𝛼)2𝐾 (𝝈𝑇Q𝝈 − ∥𝝅𝝈 ∥22).
By a similar analysis, we can derive that:

Lemma 4.8. 𝑉𝑎𝑟 [ ¤x⟨1⟩] ≤ (1 − 𝛼)2𝐾 (𝝈𝑇Q𝑑𝝈 − ∥𝝅𝝈 ∥22).
Similar to the results shown in Lemma 3.8, by the linearity property of PPR vector, applying a

power iteration at each sample is identical to applying a power iteration after all samples have

been drawn. Thus, we can first perform spanning forest sampling and then use 𝐾 power iterations

to reduce the variance of the estimator. The resulting algorithm PF is outlined in Algorithm 7. It is

easy to derive that the time complexity of Algorithm 7 is 𝑂 (𝑇 ′𝜏 +𝐾𝑚), where 𝑇 ′ is the sample size

and 𝜏 denotes the time for sampling a spanning forest.
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Algorithm 7: PF (PFV)
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , power iteration number 𝐾 , sample size𝑇

Output: The estimated PageRank vector �̂�𝝈
1 �̂�𝝈 ← 0, �̂� ← 𝝈 ;
2 for 𝜔 = 1 : 𝑇 do
3 𝑟𝑜𝑜𝑡 ← Loop-earsed 𝛼-random walk sampling (𝐺 , 𝛼 );

4 for 𝑖 = 1 : 𝑛 do
5 if 𝐺 is undirected then

6 �̂�𝝈 (𝑖 ) ← �̂�𝝈 (𝑖 ) +
∑
𝑣∈𝑉𝜌 [𝑖 ] �̂� (𝑣)∑
𝑣∈𝑉𝜌 [𝑖 ] 𝑑 (𝑣)

𝑑 (𝑖 )
𝑇

;

7 else
8 �̂�𝝈 (𝑟𝑜𝑜𝑡 (𝑖 ) ) ← �̂�𝝈 (𝑟𝑜𝑜𝑡 (𝑖 ) ) + �̂� (𝑖 )

𝑇
;

9 �̂�𝝈 ←
∑𝐾−1

𝑘=0
𝛼 (1 − 𝛼 )𝑘P𝑘𝝈 + (1 − 𝛼 )𝐾P𝐾 �̂�𝝈 ;

10 return �̂�𝝈 ;

4.3 Reducing Variance Using Former Samples
Similar to the 𝛼-random walk based estimator, we can also use the historical information of the

former samples to reduce the variances of the SF-based estimators. The basis idea is that for any

existing estimation �̂�𝝈 obtained by former samples, the corresponding residual vector r̂ can be

computed, based on which we can derive new SF-based estimators.

Specifically, given that r̂ = 𝝈 + 1−𝛼
𝛼
𝑃 �̂�𝝈 − 1

𝛼
�̂�𝝈 , we have 𝝅𝝈 = �̂�𝝈 + 𝚷r̂. It remains to use x̃ and

¤x to estimate 𝚷r̂. This leads to new SF-based estimators.

Let 𝐹 be a rooted spanning forest sampled with probability 𝑃 (𝐹 ) ∝ ∏
𝑢∈𝜌 (𝐹 )

𝛼
1−𝛼𝑑𝑜𝑢𝑡 (𝑢) and

𝜌 (𝐹 ) be the root set of 𝐹 . For a root 𝑡 ∈ 𝜌 (𝐹 ), let𝑉𝑡 denote the connected component that 𝑡 belongs

to. Then, we have the following results.

Lemma 4.9. x̃�̂�𝝈 = �̂�𝝈 +
∑
𝑡 ∈𝜌 (𝐹 )

∑
𝑢∈𝑉𝑡 r̂(𝑢)e𝑡 is an unbiased estimator of 𝝅𝝈 .

Lemma 4.10. 𝑉𝑎𝑟 [x̃�̂�𝝈 ] = r̂𝑇Qr̂ − ∥𝚷r̂∥2
2
.

Suppose that �̂�𝝈1 and �̂�𝝈2 are two estimations of �̂�𝝈 , r̂1 and r̂2 are the corresponding residual

vectors. Define the Q-norm of a vector x as ∥x∥Q = x𝑇Qx. Then, we have the following corollary.

Corollary 3. If r̂1, r̂2 satisfy ∥r̂1∥21 (∥
r̂1

∥ r̂1 ∥1 ∥Q − ∥𝚷
r̂1

∥ r̂1 ∥1 ∥
2

2
) ≤ ∥r̂2∥21 (∥

r̂2

∥ r̂2 ∥1 ∥Q − ∥𝚷
r̂2

∥ r̂2 ∥1 ∥
2

2
),

𝑉𝑎𝑟 [x̃�̂�𝝈1 ] ≤ 𝑉𝑎𝑟 [x̃�̂�𝝈2 ].
Corollary 3 gives a formal condition under which the variance can be reduced. According to

Corollary 3, since
r̂1

∥ r̂1 ∥1 is a normalized vector, the value of ∥ r̂1

∥ r̂1 ∥1 ∥Q − ∥𝚷
r̂1

∥ r̂1 ∥1 ∥
2

2
is related to the

distribution of r̂ and may not be very different for different residual vectors (as indicated in our

experiments). As a result, the variance is mainly determined by the 𝐿1-norm of the residual vector.

Since the 𝐿1-norm of the residual vector often decreases with the sample size increases, we can

devise a progressive sampling algorithm (similar to Algorithm 5) to achieve variance reduction.

For undirected graphs, we also have the following lemma.

Lemma 4.11. Let 𝐹 be a rooted spanning forest sampled with probability 𝑃 (𝐹 ) ∝∏
𝑢∈𝜌 (𝐹 )

𝛼
1−𝛼𝑑 (𝑢).

Denote by 𝑉𝜌 [𝑢 ] the connected component that 𝑢 belongs to. Then,

x̃ = �̂�𝝈 +
∑︁
𝑢∈𝑉

∑
𝑣∈𝑉𝜌 [𝑢 ] r̂(𝑣)∑
𝑣∈𝑉𝜌 [𝑢 ] 𝑑 (𝑣)

𝑑 (𝑢)e𝑢

is an unbiased estimator of 𝝅𝝈 .

Likewise, we can derive the variance of ¤x�̂�𝝈 .
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Algorithm 8: PPF (PPFV)
Input: A graph𝐺 , source distribution 𝝈 , decay parameter 𝛼 , power iteration number 𝐾 , sample size𝑇 , batch size 𝐵

Output: The estimated PageRank vector �̂�𝝈
1 �̂�𝝈 ← 0, r← 𝝈 ;
2 for 𝑖 = 1 : 𝐵 do
3 r̂← 𝝈 + 1−𝛼

𝛼
𝑃 �̂�𝝈 − 1

𝛼
�̂�𝝈 ;

4 for 𝜔 = 1 : ⌈𝑇 /𝐵⌉ do
5 𝑟𝑜𝑜𝑡 ← Loop-earsed 𝛼-random walk sampling (𝐺 , 𝛼 );

6 for 𝑖 = 1 : 𝑛 do
7 if 𝐺 is undirected then

8 �̂�𝝈 (𝑖 ) ← �̂�𝝈 (𝑖 ) +
∑
𝑣∈𝑉𝜌 [𝑖 ] �̂� (𝑣)∑
𝑣∈𝑉𝜌 [𝑖 ] 𝑑 (𝑣)

𝑑 (𝑖 )
⌈𝑇 /𝐵⌉ ;

9 else
10 �̂�𝝈 (𝑟𝑜𝑜𝑡 (𝑖 ) ) ← �̂�𝝈 (𝑟𝑜𝑜𝑡 (𝑖 ) ) + �̂� (𝑖 )

⌈𝑇 /𝐵⌉ ;

11 �̂�𝝈 ←
∑𝐾
𝑘=0

𝛼 (1 − 𝛼 )𝑘P𝑘𝝈 + (1 − 𝛼 )𝐾+1P𝐾+1�̂�𝝈 ;

12 return �̂�𝝈 ;

Table 1. Datasets

Dataset 𝑛 𝑚 𝑚/𝑛 Type

Youtube 1,134,890 2,987,624 2.63 undirected

Pokec 1,632,803 30,622,564 18.75 directed

LiveJournal 4,846,609 42,851,237 8.84 undirected

Orkut 3,072,441 117,185,083 38.14 undirected

Twitter 41,652,230 1,468,365,182 35.25 directed

Lemma 4.12. 𝑉𝑎𝑟 [ ¤x�̂�𝝈 ] = r̂𝑇Q𝑑 r̂ − ∥𝚷r̂∥2
2
.

Let �̂�𝝈1 and �̂�𝝈2 be two estimations of �̂�𝝈 , r̂1 and r̂2 be the corresponding residual vectors. Define

the Q𝑑 -norm of a vector x as ∥x∥Q𝑑 = x𝑇Q𝑑x. Then, we have the following corollary.

Corollary 4. If r̂1, r̂2 satisfy ∥r̂1∥21 (∥
r̂1

∥ r̂1 ∥1 ∥Q𝑑 − ∥𝚷
r̂1

∥ r̂1 ∥1 ∥
2

2
) ≤ ∥r̂2∥21 (∥

r̂2

∥ r̂2 ∥1 ∥Q𝑑 − ∥𝚷
r̂2

∥ r̂2 ∥1 ∥
2

2
),

𝑉𝑎𝑟 [ ¤x�̂�𝝈1 ] ≤ 𝑉𝑎𝑟 [ ¤x�̂�𝝈2 ].
Corollary 4 provides a formal condition under which the variance can be reduced. Similar to

Corollary 3, the variance of the estimation is mainly determined by the 𝐿1-norm of the residual

vector.

Based on the above results, we can devise a progressive sampling algorithm to implement such a

historical information-aided variance reduction technique. The resulting algorithm PPF is given in

Algorithm 8. The algorithm has an additional parameter, i.e., the batch size 𝐵. In each of 𝐵 batch, a

number of spanning forests are sampled (Line 4-10). Note that in order to achieve a lower variance,

it applies 𝐾 power iterations after sampling in each batch (Line 11), which is identical to use x̃⟨𝐾 ⟩

(¤x⟨𝐾 ⟩) for estimation. With a number of samples, the 𝐿1-norm of the residual vector is expected to

be reduced. Then, we construct a new estimator based on the residual vector which is derived from

the existing estimation (Line 3). In the next batch, the variance of the estimator is expected to be

lower. It is easy to see that the time complexity of PPF is𝑂 (𝑇 ′𝜏 +𝐾𝑚) since the cost for computing

the residual is less than the costs for sampling spanning forests and power iterations. Compared to

PF, PPF draws the same number of samples and conducts the same number of power iterations,

but it can reduce the variance which is also verified in our experiments.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets.We use 5 real-life datasets in the experiments. The detailed information of these datasets

is shown in Table 1. There are 3 undirected graphs Youtube, LiveJournal and Orkut, and 2 directed
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graphs Pokec and Twitter in Table 1. For undirected graphs, we replace each undirected edge

with two directed edges in both directions. These datasets are widely used in previous studies

[29, 43, 46] to evaluate PPR computation algorithms. All these datasets can be obtained from [27].

For single-source PPR query, we uniformly generate 50 source nodes as the query set (same query

set generation methods are also used in previous studies [28, 42, 43]) and report the average time

and 𝐿1-error (Let �̂�𝝈 be an estimated PageRank vector, then the 𝐿1-error is defined as ∥�̂�𝝈 −𝝅𝝈 ∥1 =∑
𝑢∈𝑉 |�̂�𝝈 (𝑢) − 𝝅𝝈 (𝑢) |).

Different algorithms. For single-source PPR query, we compare the proposed algorithms with

two state-of-the-art algorithms which are SpeedPPR [46] and SpeedL (SpeedLV) [28]. We do not

include other algorithms for comparison because all of them are outperformed by these two

algorithms [28, 46]. For the proposed algorithms, PW (Power 𝛼-random Walk sampling) denotes

Algorithm 4 which combines 𝛼-random walk sampling and power iterations. PPW (Progressive

Power𝛼-randomWalk sampling) is Algorithm 5which improves PW by utilizing former samples. PF
(PFV) (Power spanning Forests sampling) is Algorithm 7 which combines spanning forests sampling

and power iterations. PPF (PPFV) (Progressive Power spanning Forests sampling) is Algorithm 8

which improves PF by using former samples. For PageRank centrality computation, we use two

Monte Carlo algorithms MCW (𝛼-random walk sampling) and MCF (MCFV) (spanning forests

sampling) as baselines. We also include a single-source PPR algorithm FORA [43] for comparison,

since it was also extended for PageRank centrality computation in [42]. For high-precision PPR

algorithms, we include the state-of-the-art algorithm PowerPush [46] for comparison.

Parameters. For PW and PPW, there is a parameter 𝑇 which controls the sample size of the

𝛼-random walk. For a fair comparison, we set 𝑇 as 𝑛 log𝑛 by default to make sure that the number

of random walk samples is similar to that used in SpeedPPR [46]. For PPW, there is an additional

parameter 𝐵 (the batch size); and we set 𝐵 = 3 by default, as we can achieve very good performance

with 𝐵 = 3. For PF (PFV) and PPF (PPFV), there is a parameter𝑇 ′ to control the number of spanning

forests samples. We set 𝑇 ′ = 𝑇 × 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡

𝜏𝑤𝑎𝑙𝑘
by default to guarantee that the sample size is similar

to that of SpeedL (SpeedLV) for a fair comparison. For the parameter 𝐾 , we set 𝐾 = 𝑙𝑜𝑔1−𝛼𝜖2
,

𝜖 = 0.5 by default for PW and PF (PFV), and 𝐾 = 𝑙𝑜𝑔1−𝛼𝜖2/𝐵, 𝜖 = 0.5 for PPW and PPF (PPFV)
according to Corollary 1. Since most previous studies [43, 46] use a balance strategy, for all our

algorithms, we also adopt such a balance strategy, adaptively setting the parameter 𝐾 (the number

of power iterations) to ensure that the sampling time is roughly equal to the time taken by 𝐾-power

iterations. Note that with such a balance strategy, the same error guarantee still holds for all our

algorithms, as discussed in Section 3.2. We will also study the effect of the parameters 𝐵 and 𝐾 of

our algorithms. For all the baseline algorithms, we use the default parameter settings as used in

their original papers [28, 42, 46].

All the experiments are conducted on a Linux 20.04 server with Intel 2.0 GHz CPU and 128GB

memory. We obtain the ground-truth PPR results by the power iteration algorithm with an 𝐿1-error

10
−16

, which is near to “C++ double precision”. All the proposed algorithms are implemented with

C++. For SpeedPPR, SpeedL (SpeedLV) and PowerPush, we use the open-source C++ implementa-

tions by their original authors [28, 46].

5.2 Comparing 𝛼-RW and SF based Estimators
We compare the performance of the 𝛼-random walk (𝛼-RW) based estimator x̄ and the spanning

forests (SF) based estimators (x̃ and ¤x) to verify the analysis in Section 4.1. Note that as we analyzed

in Section 4.1, for the single-source PPR computation where the source distribution 𝝈 is an one-

hot distribution, the 𝛼-RW based estimator is clearly better than SF based estimators. However,

for the PageRank centrality computation where 𝝈 =
®1
𝑛
is a balanced distribution, the SF based
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Table 2. Comparison between 𝛼-RW and SF based estimators

Dataset 𝜶 𝑛∥𝝅𝝈 ∥2
2

𝒏𝝉𝒘𝒂𝒍𝒌
𝝉𝒇 𝒐𝒓𝒆𝒔𝒕

®1𝑻 Q®1
𝒏

𝐿1-error
x̄ x̃ ¤x

Youtube 0.2 62.69 10.4 891.74 0.18 0.44 0.028
0.01 89.92 190.91 210729 0.16 1.25 0.003

Pokec 0.2 2.61 6.37 39.22 0.19 0.31 \
0.01 35.98 29.11 2362.33 0.13 0.57 \

LiveJournal 0.2 3.95 8.36 84.23 0.18 0.34 0.032
0.01 7.26 168.83 55341.7 0.16 1.11 0.12

Orkut 0.2 2.73 6.69 65.57 0.19 0.41 0.03
0.01 4.12 152.54 36480 0.18 1.18 0.003

Twitter 0.2 10.69 3.4 214.87 0.17 0.25 \
0.01 6.4 3.02 345.5 0.13 0.27 \
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Fig. 4. Performance of different algorithms for computing single-source personalized PageRank
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Fig. 5. Performance of different algorithms for computing PageRank centrality

estimators can be better than the 𝛼-RW based estimator. Thus, in this experiment, we focus mainly

on the problem of PageRank centrality computation. Since the performance of the 𝛼-RW and SF

based estimators is related to 𝑛𝑟 =
®1𝑇Q®1
𝑛

, 𝑛∥𝝅𝝈 ∥22 and
𝑛𝜏𝑤𝑎𝑙𝑘
𝜏𝑓 𝑜𝑟𝑒𝑠𝑡

as shown in Lemma 4.4, we perform

SF sampling to estimate 𝑛𝑟 , ∥𝝅𝝈 ∥22 and 𝜏𝑓 𝑜𝑟𝑒𝑠𝑡 , and perform 𝛼-RW sampling to estimate 𝜏𝑤𝑎𝑙𝑘 .

To estimate the PageRank centrality, we simulate 𝑛 log𝑛 𝛼-random walks for x̄ and we sample

spanning forests to make sure that the running time of these two algorithms are almost the same.

The results are shown in Table 2. As can be seen, x̄ is always better than x̃. This is because 𝑛𝑟 is
often much larger than 𝑛∥𝝅𝝈 ∥22 on real-world graphs, thus the condition in Lemma 4.4 is hard to

meet. The accuracy of x̃ is closely dependent on 𝑛𝑟 ; the smaller it is, the higher accuracy the SF

based estimator x̃ achieves. In addition, we can see that the improved SF estimator ¤x substantially

outperforms both x̄ and x̃ on undirected graphs. This is because (1) the variance of ¤x is strictly
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smaller than both x̄ and x̃; and (2) the time for sampling 𝑛 𝛼-random walks is much higher than

that for sampling a spanning forest as shown in Table 2 (column 4). These results confirm our

theoretical analysis in Section 4.1.

5.3 Results of Single-source PPRQuery
In this experiment, we compare the performance of the proposed algorithms (PW, PPW, PF,
PFV, PPF, and PPFV) with the state-of-the-art algorithms (SpeedPPR, SpeedL and SpeedLV) for
processing single-source PPR query. Fig. 4 plots the 𝐿1-error as a function of query time for each

algorithm on all datasets, with 𝛼 = 0.2 and 𝛼 = 0.01 respectively. We vary 𝑇 to make sure the

number of samples of all approximate algorithms are similar, and vary 𝐾 to ensure a relatively

good performance for all algorithms. Note that for undirected graphs, there are three additional

algorithms SpeedLV, PFV and PPFV as shown in Fig. 4, which are based on the improved SF

estimator ¤x. As a result, there are 9 curves for undirected graphs and only 6 curves for directed

graphs. As can be seen, among all our algorithms, PPW achieves the best overall performance,

followed by PPF (PPFV), PW, and PF (PFV). We also note that PPW considerably improves PW
by the progressive sampling strategy, since the variance is further reduced by using the historical

information of former samples. When 𝛼 = 0.2, our algorithms including PPW, PPF (PPFV), and PW
can achieve comparable performance as the state-of-the-art algorithms on all datasets. In Figs.4(b-c),

although SpeedPPR performs better than our algorithms in some cases, our best algorithm can

achieve much lower 𝐿1-error using a little more time. Moreover, on the largest dataset Twitter, our
algorithms (PW, PPW and PPF) are significantly better than SpeedPPR. When 𝛼 = 0.01, however,

we can clearly see that our best algorithms including PPW and PPF (PPFV) substantially outperform
the state-of-the-art algorithms on most datasets. We also note that on Pokec (Fig. 4(g)), SpeedPPR
performs better than our algorithms. However, when enlarging the default batch size 𝐵 = 3 to

𝐵 = 7, PPW can achieve 10
−4 𝐿1-error using 22 seconds (detailed results can be found in our full

version [2]), which is much better than SpeedPPR (40 seconds). Although Pokec is an exception,

we find that the default batch size 𝐵 = 3 is proper for most datasets (see Fig. 11). In addition, our

best algorithms can obtain extremely accurate results (the 𝐿1 errors of our best algorithms can even

be less than 10
−8
) on most datasets using very low query time. For example, on the Orkut dataset,

PPW, PPFV, and PPF can achieve the 𝐿1 errors 4.6× 10
−9
, 2.2× 10

−8
, 3.6× 10

−7
using 114, 115 and

114 seconds respectively. However, on the same dataset, SpeedPPR, SpeedL and SpeedLV obtain

the 𝐿1 errors 1.8 × 10
−4
, 5.2 × 10

−2
, 3.7 × 10

−4
using 160, 159 and 159 seconds respectively. These

results indicate that the proposed variance reduction techniques are very powerful to improve

the performance of Monte Carlo based PPR computation algorithms. Moreover, compared to the

state-of-the-art SpeedPPR algorithm, our best algorithm PPW is much easier to implement, thus it

is highly recommended for PPR estimation in real-world applications.

5.4 Results of PageRank Computation
In this experiment, we compare the performance of our algorithms with the baseline algorithms

MCW, MCF (MCFV) and FORA for PageRank centrality computation (i.e., 𝝈 =
®1
𝑛
). The results

are shown in Fig. 5. SinceMCFV, PFV and PPFV can only be applied for undirected graphs, there

are 10 curves for undirected graphs and only 7 curves for directed graphs. We vary 𝑇 and 𝐾 to

ensure a good performance of for all algorithms. As can be seen, when 𝛼 = 0.2, all our algorithms

achieve comparable performance on most datasets and all of them significantly outperform the

state-of-the-art algorithms. To compare MCW, MCF, and MCFV on undirected graphs, we can

clearly see that the improved SF based algorithm MCFV is always better than the 𝛼-RW based
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Fig. 6. Comparison with high-precision algorithm

algorithm MCW, because the source distribution 𝝈 =
®1
𝑛
is a "balanced" distribution. This result

further confirms our theoretical analysis in Section 4.1.

When 𝛼 = 0.01, we can observe that PW and PF (PPF) improves over MCW and MCF (MCFV);
and PPW and PPF (PPFV) further improves PW and PF (PFV) respectively (in this case, MCW,

MCF and MCFV run out of 24 hours, thus we do not show the results in Fig. 5). Furthermore,

our best algorithms PPW and PPF (PPFV) also substantially outperform FORA on all datasets. For

example, on Orkut, both PPW and PPFV consume around 200 seconds to compute the PageRank

vector with 𝐿1-error around 10
−10

. The state-of-the-art algorithm FORA, however, consumes much

more time (1200 seconds) but achieves a much larger 𝐿1-error (10
−3
). These results demonstrate

the high effectiveness of the proposed variance reduction techniques.

5.5 Comparison with High-precision Algorithm
In previous experiments, our algorithms can achieve very low 𝐿1-errors within a short time. Here

we compare the performance of our best algorithms (PPW and PPFV) with the state-of-the-art high

precision PPR algorithm PowerPush [46]. The results on Orkut are shown in Fig. 6. For the other

datasets, the results are consistent. As can be seen, our algorithms can achieve smaller 𝐿1-error

within shorter time compared to PowerPush. For example, when 𝛼 = 0.01, PowerPush takes around

500 seconds to achieve an 𝐿1-error 10
−8

while both PPW and PPFV require less than 150 seconds,

which is at least 3× faster. This result indicates that our variance-reduced solutions are very efficient

for high-precision PPR computation.

5.6 Results with Relative Error Guarantee
In this experiments, we evaluate the performance of our solutions by varying the relative error

𝜖 . For the proposed methods, we set parameters to make sure that an (𝜖, 𝛿)-error is satisfied.
Specifically, according to Lemma 3.11, PW can guarantee an relative error 𝜖 by setting the number

of random walks 𝑇 as 𝑛 log𝑛, and set 𝐾 = log
1−𝛼 𝜖

2
. We also adopt the balanced strategy used in

[43, 46] for a fair comparison. For PPW, since in each batch, the variance is reduced in PPW, the

same error guarantee still holds when 𝑇 = 𝑛 log𝑛, 𝐾 = log
1−𝛼 𝜖

2
. Additionally, we set 𝐵 = 3. For

SF-based algorithms, similar to SpeedL and SpeedLV [28], it is hard to derive an (𝜖, 𝛿)-error bound.
Following [28], we set the number of spanning forests to make sure that the Monte-Carlo phase of

the algorithm takes similar time with that of 𝛼-RW based algorithm SpeedPPR so that they are

expected to obtain a similar (𝜖, 𝛿)-error. For the baseline methods FORA [43], SpeedPPR [46] and

SpeedL, SpeedLV [28], we set parameters following their original implementations. We compare

the running time of different algorithms with varying 𝜖 from 0.5 to 0.1. We also plot the 𝐿1-error

of various algorithms with varying 𝜖 . We conduct experiments on both directed and undirected

graphs. Fig. 7 and Fig. 8 show the results onOrkut and Twitter respectively. The results on the other

datasets are consistent. It can be seen that when 𝜖 gets smaller, the running time of all algorithms

become longer, and the 𝐿1-error gets smaller. For single source query, PW is significantly better

than SpeedPPR to achieve the same relative error 𝜖 ; PPW takes a little more time than PW, but it

can achieve much lower 𝐿1-error than PW. Moreover, compared to SpeedPPR, PPW can achieve a
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Fig. 7. Results of different algorithms with relative
error guarantee for single source PPR query
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Fig. 8. Results of different algorithms with relative
error guarantee for PageRank centrality computation

much lower 𝐿1-error using less time. For example, when 𝛼 = 0.01 and 𝜖 = 0.1, PPW is an order of

magnitude faster than SpeedPPR. Furthermore, on Orkut, the 𝐿1-error of PPW is even 4 orders

of magnitude smaller than that of SpeedPPR. PF (PPF) is worse than PW (PPW) and PFV (PPFV)
is competitive with PW (PPW). Likewise, for PageRank centrality computation, our algorithms

are also significantly better than the state-of-the-art algorithm FORA. These results indicate that
our variance-reduced techniques are indeed very efficient and effective for PPR computations with

relative error guarantees.

5.7 Results of PPR Computation with Random 𝜎

In this experiment, we evaluate our algorithms for PPR computation with a random distribution 𝝈 .
Specifically, we draw 𝑛 uniform random numbers in [0, 1] and normalize the vector to generate a

source distribution 𝝈 . We generate 50 such source distributions as the query set and report the

average performance. The results on Youtube are shown in Fig. 9. We can also observe similar

results on the other datasets. As shown in Fig. 9, the results are very similar to those of the PageRank

centrality computation. The proposed algorithms PW, PPW, PF (PFV), PPF (PPFV) significantly
outperform the baseline algorithms MCW, MCF (MCFV) and FORA for both 𝛼 = 0.2 and 𝛼 = 0.01.

For example, when 𝛼 = 0.01, PPW and PPFV consume around 40 seconds to compute the PPR vector

with 𝐿1-error around 10
−12

and 10
−10

. The state-of-the-art algorithm FORA, however, consumes

much more time (180 seconds) but achieve a much larger 𝐿1-error (10
−3
). These results further

confirm the high effectiveness of the proposed solutions.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 160. Publication date: June 2023.



160:22 Meihao Liao et al.

10
-8

10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

MCW

MCF

MCFV

FORA

PW

PPW

PF

PPF

PFV

PPFV

(a) Youtube, 𝛼 = 0.2

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
0

10
1

10
2

10
3

L
1

-e
rr

o
r

query time (sec)

FORA

PW

PPW

PF

PPF

PFV

PPFV

(b) Youtube, 𝛼 = 0.01

Fig. 9. Performance of various algorithms for computing PPR with a random source distribution 𝝈
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Fig. 10. Results of our algorithms with varying 𝐾
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Fig. 11. Results of our algorithms with varying 𝐵

5.8 Results of Varying Parameters
Here we study the effect of the parameters 𝐾 and 𝐵 in our algorithms. Recall that PW, PF (PFV),
PPW, and PPF (PPFV) have a parameter 𝐾 , while PPW and PPF (PPFV) also have an additional

parameter 𝐵. To study the effect of 𝐾 , we vary 𝐾 from 20 to 100 for all algorithms. Fig. 10 shows

the results of our algorithms with varying 𝐾 on Youtube given that 𝛼 = 0.01. We can also observe

similar results on the other datasets and with other values of 𝛼 . Note that in Fig. 10, an algorithm

with a prefix “SS” (PC) means that it is used to compute the single-source PPR query (PageRank

centrality). As expected, when 𝐾 gets larger, the 𝐿1-errors of each algorithm become smaller, but

its computation time also grows. As a result, in our previous experiments, we adaptively set 𝐾 so

that the time costs for sampling and power iterations are roughly equal, which can achieve good

performance in practice.

To investigate the effect of 𝐵, we vary 𝐵 from 1 to 7 for PPW, PPF, and PPFV. The results on
Youtube with 𝛼 = 0.01 are shown in Fig. 11. The results on the other datasets and with other 𝛼

values are consistent. As shown in Fig. 11, the query time of all algorithms is insensitive w.r.t. the

parameter 𝐵, as the time complexity of our algorithms is not related to 𝐵. We can also see that when

𝐵 increases, the 𝐿1-errors of most our algorithms decrease first and then increase. This is because

when 𝐵 becomes too large, the number of samples in each batch is not sufficient to make the norm

of the residual vector decrease, thus may result in larger variances. As a result, we recommend

to set 𝐵 as a small integer, such as 𝐵 = 3 as used in our previous experiments, for real-world PPR

computation applications.

5.9 Comparing Various Power Procedures
Note that in all previous experiments, our algorithms are integrated with a basic power iteration

procedure. However, the power iteration procedure can be optimized using the PowerPush algo-

rithm proposed in [46]. Specifically, the optimization techniques in PowerPush include using local
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Fig. 12. Results of different implementations of the power iteration procedure

Table 3. Recommendation for different PPR algorithms. "SSQ" is the abbreviation of "single source query",
"PRC" is the abbreviation of "PageRank computation".

directed graph undirected graph
large 𝛼 small 𝛼 large 𝛼 small 𝛼

(e.g. 𝛼 = 0.2) (𝛼 = 0.01) (e.g. 𝛼 = 0.2) (𝛼 = 0.01)

SSQ relative error PW PW PW, PFV PW, PFV
𝐿1-error PW, PPW PPW PW, PPFV PPW, PPFV

PRC relative error PW PW PW, PFV PW, PFV
𝐿1-error PPW PPW PPW, PPFV PPW, PPFV

updates when the size of active nodes is small, and using dynamic 𝐿1-error threshold to achieve

a desired 𝐿1-error. We adopt the implementation of PowerPush in our PW algorithm, and the

resulting algorithm is denoted by PW+. Note that PPW is very hard to integrate with PowerPush,
because we do not know the 𝐿1-error that we need to achieve in each batch of PPW. Likewise, both

PF and PFV can also integrate with PowerPush, but their results are very similar to PW+. To avoid

redundancy, we mainly compare the performance of PW, PW+ and PPW in terms of both running

time and 𝐿1-error. Fig. 12 shows the results on Orkut, and similar results can also be observed on

the other datasets. As can be seen, PW+ can achieve the same 𝐿1-error using 2× shorter time than

PW, which is consistent with the results reported in [46] where PowerPush is around 2× faster

than the basic power iteration method. However, such an improvement is limited. For comparison,

PPW can achieve the same 𝐿1-error in much shorter time (10× faster than PW when 𝛼 = 0.01).

This result indicates that our estimators which utilize historical sample information are much more

powerful than the optimized implementation of power iteration used in PowerPush.

5.10 Summary of findings
Here we summarize our main findings. Among all the proposed methods, PW is competitive or

better than the state-of-the-art PPR computation algorithms. PPW further significantly improves

over PW by utilizing the progressively sampling technique. When the applications only require to

guarantee a relative error 𝜖 , PW is better than all other algorithms. When we want to achieve a

lower 𝐿1-error, PPW is much better than the other algorithms. For SF based algorithms, PF and
PPF are outperformed by PW and PPW. On undirected graphs, by utilizing the variance-reduced

estimators ¤x, PFV and PPFV are competitive to PW and PPW. Based on these results, we make the

following recommendations for selecting a PPR algorithm for practical applications in Table 3. For

example, for PPR computation on undirected graphs, when 𝛼 is relatively small (e.g. 𝛼 = 0.01) and

we only require a relative error guarantee, we recommend to use PW or PFV. When we want more

accurate results, however, we recommend PPW and PPFV.

6 RELATEDWORK
Existing algorithms for (personalized) PageRank computation can be classified into two categories:

deterministic algorithms and approximate algorithms. Deterministic PageRank algorithms are

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 160. Publication date: June 2023.



160:24 Meihao Liao et al.

mainly based on the power method [9, 35, 48] or the forward push method [1, 6, 22]. Many efforts

have been made to improve the efficiency of the power method. Notable improved techniques

of the power method include block matrix elimination [23, 35], Chebyshev polynomial speedup

[9, 10], and core-tree decomposition [34]. There also exist studies [46] to optimize forward push by

combining it with the power method. Those deterministic algorithms can achieve a high precision,

but they often require considerable time overheads, which is unacceptable for processing online

PageRank queries on large graphs.

Among the extensive studies on PageRank computation, ones that are most related to our work

are approximate algorithms. Most of them are based on the 𝛼-random walk sampling. [3, 31]

directly applied the 𝛼-random walk sampling to estimate PageRank centrality. Recently, Lofgren

et al. [32] proposed a bidirectional method to improve the efficiency of 𝛼-random walk sampling

by combining it with forward push. Following such a bidirectional technique, several advanced

methods [29, 40, 43, 46] were also proposed to further improve the efficiency of the 𝛼-random

walk sampling method. However, all of these studies focus mainly on optimizing the forward push

procedure, and little optimization has been done on the Monte Carlo sampling. More recently,

spanning forests based sampling technique was proposed in [28], which combines spanning forests

sampling with forward push. Such a spanning forests based sampling technique performs very

well on undirected graphs with a small 𝛼 . However, on directed graphs, the spanning forests

based sampling technique is still inefficient when 𝛼 is small. Moreover, there still lacks a formal

comparison between 𝛼-random walk sampling based methods and spanning forests sampling based

methods. In this paper, we provide a formal comparison between these two Monte Carlo techniques

and develop two novel variance reduction techniques to improve these Monte Carlo methods.

In addition, it is worth mentioning that there exist many other studies on the variants of

PageRank computation problems, such as single target personalized PageRank query [33, 38, 41],

Top-k personalized PageRank query [4, 13–15, 19, 44], PageRank computation on parallel [18, 21, 39]

and distributed [17, 30] settings, as well as PageRank computation on dynamic graphs [49–51]. All

these studies, however, are orthogonal to our work.

7 CONCLUSION
In this work, we develop two novel techniques to reduce the variances of the Monte Carlo estimators

for personalized PageRank (PPR) computation. Specifically, we first show that applying few power

iterations on two existing Monte Carlo estimators, including both the 𝛼-random walk and the

spanning forests based estimators, can substantially reduce the variance of these two estimators.

Second, we also develop a progressive sampling technique which utilizes the historical information

of the former samples to further reduce the variance of the Monte Carlo estimators. Equipped with

these two novel variance reduction techniques, we propose several new and efficient algorithms for

PPR computation. Extensive experiments on 5 large real-life datasets show that the newly-proposed

algorithms significantly outperform the state-of-the-art bidirectional algorithms, in terms of both

computation time and estimation accuracy.
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